Application of InSAR and GIS Techniques to Ground Subsidence Assessment in the Nobi Plain, Central Japan
نویسندگان
چکیده
Spatial variation and temporal changes in ground subsidence over the Nobi Plain, Central Japan, are assessed using GIS techniques and ground level measurements data taken over this area since the 1970s. Notwithstanding the general slowing trend observed in ground subsidence over the plains, we have detected ground rise at some locations, more likely due to the ground expansion because of recovering groundwater levels and the tilting of the Nobi land mass. The problem of non-availability of upper-air meteorological information, especially the 3-dimensional water vapor distribution, during the JERS-1 observational period (1992-1998) was solved by applying the AWC (analog weather charts) method onto the high-precision GPV-MSM (Grid Point Value of Meso-Scale Model) water-vapor data to find the latter's matching meteorological data. From the selected JERS-1 interferometry pair and the matching GPV-MSM meteorological data, the atmospheric path delay generated by water vapor inhomogeneity was then quantitatively evaluated. A highly uniform spatial distribution of the atmospheric delay, with a maximum deviation of approximately 38 mm in its horizontal distribution was found over the Plain. This confirms the effectiveness of using GPV-MSM data for SAR differential interferometric analysis, and sheds thus some new light on the possibility of improving InSAR analysis results for land subsidence applications.
منابع مشابه
Estimation of Subsidence Potential Index Using the PCSM Method and Fuzzy Model in Ardabil Plain Aquifer
Recently, land subsidence due to natural and human factors changed to catastrophic destruction for the residential, agricultural and industrial areas. In this study, the high potential subsidence areas of Ardabil plain were identified to control and manage this phenomenon. Thus, the seven effective parameters on the subsidence were rated and weighted and the subsidence potential index (SPI) was...
متن کاملComparison of Vulnerability of the Southwest Tehran Plain Aquifer with Simple Weighting Model (ALPRIFT Model) and Genetic Algorithm (GA)
Land subsidence due to groundwater resources extraction is one of the abundance events occurred in Iran. If it is not properly managed, this phenomenon can cause irreparable damage to the affected areas. Population growth and agricultural technology have also led to overexploitation of the groundwater resources in some parts of Iran. The rate of land subsidence due to overexploitation of the g...
متن کاملEvaluation of land subsidence in Kashmar-Bardaskan plain, NE Iran
The development of agriculture and industry and the increase of population in countries with arid to semi-arid climates have led to more harvesting of groundwater resources and as a result land subsidence in different parts of the worlds. Decades of groundwater overexploitation in the Kashmar-Bardaskan plain in the north-east of Iran has resulted substantial land subsidence in this plain. The p...
متن کاملStudy of subsidence of Abarkooh plain of Yazd using the Synthetic Aperture Radar Interferometry method
Abstract The population growth, the development of cities, industry, agriculture, and improper use of resources especially non-renewable resources have led human beings to face the danger of running out of resources. In some cases, in addition to the above, irreversible environmental and geological hazards have occurred due to the overdrawn of resources. Over extraction of groundwater resourc...
متن کاملQuantitative Subsidence Monitoring: The Integrated InSAR, GPS and GIS Approach
Errors in radar satellite orbit determination are common problems in radar interferometry (InSAR). For example, when trying to locate a radar test site with known geographic coordinates using the geocoding information in SAR image (the latitude and longitude of the four image corners), the location may be well away from the true position. Another example is when there is indeed a significant si...
متن کامل